File system
This article is about the way computers store files on disk. For library and office filing systems, see library classification.
In computing, a file system (or filesystem)
is used to control how information is stored and retrieved. Without a
file system, information placed in a storage area would be one large
body of information with no way to tell where one piece of information
stops and the next begins.By separating the information into individual pieces, and giving each piece a name, the information is easily separated and identified. Taking its name from the way paper based information systems are named, each piece of information is called a "file". The structure and logic rules used to manage the groups of information and their names is called a "file system".
There are many different kinds of file systems. Each one has different structure and logic. Each one has different properties of speed, flexibility, security, size and more. Some file systems have been designed to be used for specific applications. For example the ISO 9660 file system is designed specifically for optical disks.
File systems can be used on many different kinds of storage devices. Each storage device uses a different kind of media. The most common storage device in use today is a hard drive whose media is a disc that has been coated with a magnetic film. The film has ones and zeros 'written' on it sending electrical pulses to a magnetic "read-write" head. Other media that are used are magnetic tape, optical disc, and flash memory. In some cases, the computer's main memory (RAM) is used to create a temporary file system for short term use.
File systems are used to implement type of data store to store, retrieve and update a set of files. "File system" refers to either the abstract data structures used to define files, or the actual software or firmware components that implement the abstract ideas.
Some file systems are used on local data storage devices; others provide file access via a network protocol (e.g. NFS, SMB, or 9P clients). Some file systems are "virtual", in that the "files" supplied are computed on request (e.g. procfs) or are merely a mapping into a different file system used as a backing store. The file system manages access to both the content of files and the metadata about those files. It is responsible for arranging storage space; reliability, efficiency, and tuning with regard to the physical storage medium are important design considerations.
Space management
Note: this only applies to file systems used in storage devices.File systems allocate space in a granular manner, usually multiple physical units on the device. The file system is responsible for organizing files and directories, and keeping track of which areas of the media belong to which file and which are not being used. For example, in Apple DOS of the early 1980s, 256-byte sectors on 140 kilobyte floppy disk used a track/sector map.[citation needed]
This results in unused space when a file is not an exact multiple of the allocation unit, sometimes referred to as slack space. For a 512-byte allocation, the average unused space is 256 bytes. For a 64 KB clusters, the average unused space is 32KB. The size of the allocation unit is chosen when the file system is created. Choosing the allocation size based on the average size of the files expected to be in the file system can minimize the amount of unusable space. Frequently the default allocation may provide reasonable usage. Choosing an allocation size that is too small results in excessive overhead if the file system will contain mostly very large files.
File system fragmentation occurs when unused space or single files are not contiguous. As a file system is used, files are created, modified and deleted. When a file is created the file system allocates space for the data. Some file systems permit or require specifying an initial space allocation and subsequent incremental allocations as the file grows. As files are deleted the space they were allocated eventually is considered available for use by other files. This creates alternating used and unused areas of various sizes. This is free space fragmentation. When a file is created and there is not an area of contiguous space available for its initial allocation the space must be assigned in fragments. When a file is modified such that it becomes larger it may exceed the space initially allocated to it, another allocation must be assigned elsewhere and the file becomes fragmented.
Filenames
Main article: Filename
A filename (or file name) is used to identify a storage
location in the file system. Most file systems have restrictions on the
length of filenames. In some file systems, filenames are not case sensitive (i.e., filenames such as FOO
and foo
refer to the same file); in others, filenames are case sensitive (i.e., the names FOO
and foo
refer to two separate files).Most modern file systems allow filenames to contain a wide range of characters from the Unicode character set. Most file system interface utilities, however, have restrictions on the use of certain special characters, disallowing them within filenames (the file system may use these special characters to indicate a device, device type, directory prefix, or file type). However, these special characters might be allowed by, for example, enclosing the filename with double quotes ("). For simplicity, special characters are generally discouraged within filenames.
Directories
Main article: Directory (file systems)
File systems typically have directories (also called folders)
which allow the user to group files into separate collections. This may
be implemented by associating the file name with an index in a table of contents or an inode in a Unix-like
file system. Directory structures may be flat (i.e. linear), or allow
hierarchies where directories may contain subdirectories. The first file
system to support arbitrary hierarchies of directories was used in the Multics operating system.[1] The native file systems of Unix-like systems also support arbitrary directory hierarchies, as do, for example, Apple's Hierarchical File System, and its successor HFS+ in classic Mac OS (HFS+ is still used in Mac OS X), the FAT file system in MS-DOS 2.0 and later and Microsoft Windows, the NTFS file system in the Windows NT family of operating systems, and the ODS-2 (On-Disk Structure-2) and higher levels of the Files-11 file system in OpenVMS.Metadata
Other bookkeeping information is typically associated with each file within a file system. The length of the data contained in a file may be stored as the number of blocks allocated for the file or as a byte count. The time that the file was last modified may be stored as the file's timestamp. File systems might store the file creation time, the time it was last accessed, the time the file's metadata was changed, or the time the file was last backed up. Other information can include the file's device type (e.g. block, character, socket, subdirectory, etc.), its owner user ID and group ID, its access permissions and other file attributes (e.g. whether the file is read-only, executable, etc.).A file system stores all the metadata associated with the file—including the file name, the length of the contents of a file, and the location of the file in the folder hierarchy—separate from the contents of the file.
Most file systems store the names of all the files in one directory in one place—the directory table for that directory—which is often stored like any other file. Many file systems put only some of the metadata for a file in the directory table, and the rest of the metadata for that file in a completely separate structure, such as the inode.
Most file systems also store metadata not associated with any one particular file. Such metadata includes information about unused regions -- free space bitmap, block availability map—and information about bad sectors. Often such information about an allocation group is stored inside the allocation group itself.
Additional attributes can be associated on file systems, such as NTFS, XFS, ext2, ext3, some versions of UFS, and HFS+, using extended file attributes. Some file systems provide for user defined attributes such as the author of the document, the character encoding of a document or the size of an image.
Some file systems allow for different data collections to be associated with one file name. These separate collections may be referred to as streams or forks. Apple has long used a forked file system on the Macintosh, and Microsoft supports streams in NTFS. Some file systems maintain multiple past revisions of a file under a single file name; the filename by itself retrieves the most recent version, while prior saved version can be accessed using a special naming convention such as "filename;4" or "filename(-4)" to access the version four saves ago.
See comparison of file systems#Metadata for details on which file systems support which kinds of metadata.
File system as an abstract user interface
In some cases, a file system may not make use of a storage device but can be used to organize and represent access to any data, whether it is stored or dynamically generated (e.g. procfs).Utilities
The difference between a utility and a built-in core command function is arbitrary, depending on the design of the operating system, and the memory and space limitations of the hardware. For example, in Microsoft MS-DOS, formatting is performed by a utility and simple file copying is a built-in command, while in the Apple DOS, formatting is a built-in command but simple file copying is performed with a utility.File systems include utilities to initialize, alter parameters of and remove an instance of the file system. Some include the ability to extend or truncate the space allocated to the file system.
Directory utilities create, rename and delete directory entries and alter metadata associated with a directory. They may include a means to create additional links to a directory (hard links in Unix), rename parent links (".." in Unix-like OS), and create bidirectional links to files.
File utilities create, list, copy, move and delete files, and alter metadata. They may be able to truncate data, truncate or extend space allocation, append to, move, and modify files in-place. Depending on the underlying structure of the file system, they may provide a mechanism to prepend to, or truncate from, the beginning of a file, insert entries into the middle of a file or delete entries from a file.
Also in this category are utilities to free space for deleted files if the file system provides an undelete function.
Some file systems defer reorganization of free space, secure erasing of free space and rebuilding of hierarchical structures. They provide utilities to perform these functions at times of minimal activity. Included in this category is the infamous defragmentation utility.
Some of the most important features of file system utilities involve supervisory activities which may involve bypassing ownership or direct access to the underlying device. These include high-performance backup and recovery, data replication and reorganization of various data structures and allocation tables within the file system.
Restricting and permitting access
See also: Computer security, Password cracking, Filesystem-level encryption, and Encrypting File System
There are several mechanisms used by file systems to control access
to data. Usually the intent is to prevent reading or modifying files by a
user or group of users. Another reason is to ensure data is modified in
a controlled way so access may be restricted to a specific program.
Examples include passwords stored in the metadata of the file or
elsewhere and file permissions in the form of permission bits, access control lists, or capabilities.
The need for file system utilities to be able to access the data at the
media level to reorganize the structures and provide efficient backup
usually means that these are only effective for polite users but are not
effective against intruders.Methods for encrypting file data are sometimes included in the file system. This is very effective since there is no need for file system utilities to know the encryption seed to effectively manage the data. The risks of relying on encryption include the fact that an attacker can copy the data and use brute force to decrypt the data. Losing the seed means losing the data.
Maintaining integrity
One significant responsibility of a file system is to ensure that, regardless of the actions by programs accessing the data, the structure remains consistent. This includes actions taken if a program modifying data terminates abnormally or neglects to inform the file system that it has completed its activities. This may include updating the metadata, the directory entry and handling any data that was buffered but not yet updated on the physical storage media.Other failures which the file system must deal with include media failures or loss of connection to remote systems.
In the event of an operating system failure or "soft" power failure, special routines in the file system must be invoked similar to when an individual program fails.
The file system must also be able to correct damaged structures. These may occur as a result of an operating system failure for which the OS was unable to notify the file system, power failure or reset.
The file system must also record events to allow analysis of systemic issues as well as problems with specific files or directories.
User data
The most important purpose of a file system is to manage user data. This includes storing, retrieving and updating data.Some file systems accept data for storage as a stream of bytes which are collected and stored in a manner efficient for the media. When a program retrieves the data it specifies the size of a memory buffer and the file system transfers data from the media to the buffer. Sometimes a runtime library routine may allow the user program to define a record based on a library call specifying a length. When the user program reads the data the library retrieves data via the file system and returns a record.
Some file systems allow the specification of a fixed record length which is used for all write and reads. This facilitates updating records.
An identification for each record, also known as a key, makes for a more sophisticated file system. The user program can read, write and update records without regard with their location. This requires complicated management of blocks of media usually separating key blocks and data blocks. Very efficient algorithms can be developed with pyramid structure for locating records.
Using a file system
Utilities, language specific run-time libraries and user programs use file system APIs to make requests of the file system. These include data transfer, positioning, updating metadata, managing directories, managing access specifications, and removal.Multiple file systems within a single system
Frequently retail systems are configured with a single file system occupying the entire hard disk.Another approach is to partition the disk so that several file systems with different attributes can be used. One file system, for use as browser cache, might be configured with a small allocation size. This has the additional advantage of keeping the frantic activity of creating and deleting files typical of browser activity in a narrow area of the disk and not interfering with allocations of other files. A similar partition might be created for email. Another partition, and file system might be created for the storage of audio or video files with a relatively large allocation. One of the file systems may normally be set read-only and only periodically be set writable.
A third approach, which is mostly used in cloud systems, is to use "disk images" to house additional file systems, with the same attributes or not, within another (host) file system as a file. A common example is virtualization: one user can run an experimental Linux distribution (using the ext4 file system) in a virtual machine under his/her production Windows environment (using NTFS). The ext4 file system resides in a disk image, which is treated as a file (or multiple files, depending on the hypervisor and settings) in the NTFS host file system.
Having multiple file systems on a single system has the additional benefit that in the event of a corruption of a single partition, the remaining file systems will frequently still be intact. This includes virus destruction of the system partition or even a system that will not boot. File system utilities which require dedicated access can be effectively completed piecemeal. In addition, defragmentation may be more effective. Several system maintenance utilities, such as virus scans and backups, can also be processed in segments. For example it is not necessary to backup the file system containing videos along with all the other files if none have been added since the last backup. As of the image files, one can easily "spin off" differential images which contain only "new" data written to the master (original) image. Differential images can be used for both safety concerns (as a "disposable" system - can be quickly restored if destroyed or contaminated by a virus, as the old image can be removed and a new image can be created in matter of seconds, even without automated procedures) and quick virtual machine deployment (since the differential images can be quickly spawned using a script in batches).
Design limitations
All file systems have some functional limit that defines the maximum storable data capacity within that system. These functional limits are a best-guess effort by the designer based on how large the storage systems are right now and how large storage systems are likely to become in the future. Disk storage has continued to increase at near exponential rates (see Moore's law), so after a few years, file systems have kept reaching design limitations that require computer users to repeatedly move to a newer system with ever-greater capacity.File system complexity typically varies proportionally with the available storage capacity. The file systems of early 1980s home computers with 50 KB to 512 KB of storage would not be a reasonable choice for modern storage systems with hundreds of gigabytes of capacity. Likewise, modern file systems would not be a reasonable choice for these early systems, since the complexity of modern file system structures would consume most or all of the very limited capacity of the early storage systems.
Types of file systems
File system types can be classified into disk/tape file systems, network file systems and special-purpose file systems.Disk file systems
A disk file system takes advantages of the ability of disk storage media to randomly address data in a short amount of time. Additional considerations include the speed of accessing data following that initially requested and the anticipation that the following data may also be requested. This permits multiple users (or processes) access to various data on the disk without regard to the sequential location of the data. Examples include FAT (FAT12, FAT16, FAT32), exFAT, NTFS, HFS and HFS+, HPFS, UFS, ext2, ext3, ext4, XFS, btrfs, ISO 9660, Files-11, Veritas File System, VMFS, ZFS, ReiserFS and UDF. Some disk file systems are journaling file systems or versioning file systems.Optical discs
ISO 9660 and Universal Disk Format (UDF) are two common formats that target Compact Discs, DVDs and Blu-ray discs. Mount Rainier is an extension to UDF supported by Linux 2.6 series and Windows Vista that facilitates rewriting to DVDs.Flash file systems
Main article: Flash file system
A flash file system considers the special abilities, performance and restrictions of flash memory
devices. Frequently a disk file system can use a flash memory device as
the underlying storage media but it is much better to use a file system
specifically designed for a flash device.Tape file systems
A tape file system is a file system and tape format designed to store files on tape in a self-describing form. Magnetic tapes are sequential storage media with significantly longer random data access times than disks, posing challenges to the creation and efficient management of a general-purpose file system.In a disk file system there is typically a master file directory, and a map of used and free data regions. Any file additions, changes, or removals require updating the directory and the used/free maps. Random access to data regions is measured in milliseconds so this system works well for disks.
Tape requires linear motion to wind and unwind potentially very long reels of media. This tape motion may take several seconds to several minutes to move the read/write head from one end of the tape to the other.
Consequently, a master file directory and usage map can be extremely slow and inefficient with tape. Writing typically involves reading the block usage map to find free blocks for writing, updating the usage map and directory to add the data, and then advancing the tape to write the data in the correct spot. Each additional file write requires updating the map and directory and writing the data, which may take several seconds to occur for each file.
Tape file systems instead typically allow for the file directory to be spread across the tape intermixed with the data, referred to as streaming, so that time-consuming and repeated tape motions are not required to write new data.
However, a side effect of this design is that reading the file directory of a tape usually requires scanning the entire tape to read all the scattered directory entries. Most data archiving software that works with tape storage will store a local copy of the tape catalog on a disk file system, so that adding files to a tape can be done quickly without having to rescan the tape media. The local tape catalog copy is usually discarded if not used for a specified period of time, at which point the tape must be re-scanned if it is to be used in the future.
IBM has developed a file system for tape called the Linear Tape File System. The IBM implementation of this file system has been released as the open-source IBM Linear Tape File System — Single Drive Edition (LTFS-SDE) product. The Linear Tape File System uses a separate partition on the tape to record the index meta-data, thereby avoiding the problems associated with scattering directory entries across the entire tape.
Tape formatting
Writing data to a tape is often a significantly time-consuming process that may take several hours. Similarly, completely erasing or formatting a tape can also take several hours. With many data tape technologies it is not necessary to format the tape before over-writing new data to the tape. This is due to the inherently destructive nature of overwriting data on sequential media.Because of the time it can take to format a tape, typically tapes are pre-formatted so that the tape user does not need to spend time preparing each new tape for use. All that is usually necessary is to write an identifying media label to the tape before use, and even this can be automatically written by software when a new tape is used for the first time.
Comments
Post a Comment