Malware

Malware, short for malicious software, is software used to disrupt computer operation, gather sensitive information, or gain access to private computer systems. It can appear in the form of code, scripts, active content, and other software. 'Malware' is a general term used to refer to a variety of forms of hostile or intrusive software.
Malware includes computer viruses, ransomware, worms, trojan horses, rootkits, keyloggers, dialers, spyware, adware, malicious BHOs, rogue security software and other malicious programs; the majority of active malware threats are usually worms or trojans rather than viruses. In law, malware is sometimes known as a computer contaminant, as in the legal codes of several U.S. states.[5][6] Malware is different from defective software, which is a legitimate software but contains harmful bugs that were not corrected before release. However, some malware is disguised as genuine software, and may come from an official company website in the form of a useful or attractive program which has the harmful malware embedded in it along with additional tracking software that gathers marketing statistics.
Software such as anti-virus, anti-malware, and firewalls are relied upon by users at home, small and large organizations around the globe to safeguard against malware attacks which helps in identifying and preventing the further spread of malware in the network.

Purposes

Many early infectious programs, including the first Internet Worm, were written as experiments or pranks. Today, malware is used primarily to steal sensitive information of personal, financial, or business importance by black hat hackers with harmful intentions.
Malware is sometimes used broadly against government or corporate websites to gather guarded information, or to disrupt their operation in general. However, malware is often used against individuals to gain personal information such as social security numbers, bank or credit card numbers, and so on. Left unguarded, personal and networked computers can be at considerable risk against these threats. (These are most frequently counter-acted by various types of firewalls, anti-virus software, and network hardware).
Since the rise of widespread broadband Internet access, malicious software has more frequently been designed for profit. Since 2003, the majority of widespread viruses and worms have been designed to take control of users' computers for black-market exploitation. Infected "zombie computers" are used to send email spam, to host contraband data such as child pornography,[or to engage in distributed denial-of-service attacks as a form of extortion.
Another strictly for-profit category of malware has emerged, called spyware. These programs are designed to monitor users' web browsing, display unsolicited advertisements, or redirect affiliate marketing revenues to the spyware creator. Spyware programs do not spread like viruses; instead they are generally installed by exploiting security holes. They can also be packaged together with user-installed software, such as peer-to-peer applications.



Proliferation

Preliminary results from Symantec published in 2008 suggested that "the release rate of malicious code and other unwanted programs may be exceeding that of legitimate software applications."According to F-Secure, "As much malware [was] produced in 2007 as in the previous 20 years altogether." Malware's most common pathway from criminals to users is through the Internet: primarily by e-mail and the World Wide Web.
The prevalence of malware as a vehicle for Internet crime, along with the challenge of anti-malware softwarto keep up with the continuous stream of new malware, has seen the adoption of a new mindset for individuals and businesses using the Internet. With the amount of malware currently being distributed, some percentage of computers will always be infected. For businesses, especially those that sell mainly over the Internet, this means they need to find a way to operate despite security concerns. The result is a greater emphasis on back-office protection designed to protect against advanced malware operating on customers' computers.A 2013 Webroot study shows that 64% of companies allow remote access to servers for 25% to 100% of their workforce and that companies with more than 25% of their employees accessing servers remotely have higher rates of malware threats.
On March 29, 2010, Symantec Corporation named Shaoxing, China, as the world's malware capital. A 2011 study from the University of California, Berkeley, and the Madrid Institute for Advanced Studies published an article in Software Development Technologies, examining how entrepreneurial hackers are helping enable the spread of malware by offering access to computers for a price. Microsoft reported in May 2011 that one in every 14 downloads from the Internet may now contain malware code. Social media, and Facebook in particular, are seeing a rise in the number of tactics used to spread malware to computers.

Infectious malware: viruses and worms

The best-known types of malware, viruses and worms, are known for the manner in which they spread, rather than any specific types of behavior. The term computer virus is used for a program that has infected some executable software and, when run, causes the virus to spread to other executables. On the other hand, a worm is a program that actively transmits itself over a network to infect other computers. These definitions lead to the observation that a virus requires user intervention to spread, whereas a worm spreads itself automatically.
Using this distinction, infections transmitted by email or Microsoft Word documents, which rely on the recipient opening a file or email to infect the system, would be classified as viruses rather than worms.

Concealment: Viruses, trojan horses, rootkits, and backdoors

Trojan horses

For a malicious program to accomplish its goals, it must be able to run without being detected, shut down, or deleted. When a malicious program is disguised as something normal or desirable, users may willfully install it without realizing it. This is the technique of the Trojan horse or trojan. In broad terms, a Trojan horse is any program that invites the user to run it, concealing harmful or malicious code. The code may take effect immediately and can lead to many undesirable effects, such as deleting the user's files or installing additional harmful software.[citation needed]
One of the most common ways that spyware is distributed is as a Trojan horse, bundled with a piece of desirable software that the user downloads from the Internet. When the user installs the software, the spyware is installed along with it. Spyware authors who attempt to act in a legal fashion may include an end-user license agreement that states the behavior of the spyware in loose terms, which users may not read or understand.[citation needed]

Rootkits

Once a malicious program is installed on a system, it is essential that it stays concealed, to avoid detection. Software packages known as rootkits allow this concealment, by modifying the host's operating system so that the malware is hidden from the user. Rootkits can prevent a malicious process from being visible in the system's list of processes, or keep its files from being read.
Some malicious programs contain routines to defend against removal, not merely to hide themselves. An early example of this behavior is recorded in the Jargon File tale of a pair of programs infesting a Xerox CP-V time sharing system:
Each ghost-job would detect the fact that the other had been killed, and would start a new copy of the recently stopped program within a few milliseconds. The only way to kill both ghosts was to kill them simultaneously (very difficult) or to deliberately crash the system.[

Backdoors

A backdoor is a method of bypassing normal authentication procedures. Once a system has been compromised, one or more backdoors may be installed in order to allow easier access in the future.Backdoors may also be installed prior to malicious software, to allow attackers entry.[citation needed]
The idea has often been suggested that computer manufacturers preinstall backdoors on their systems to provide technical support for customers, but this has never been reliably verified. Crackers typically use backdoors to secure remote access to a computer, while attempting to remain hidden from casual inspection. To install backdoors crackers may use Trojan horses, worms, or other methods.[citation needed]

History of viruses and worms

Before Internet access became widespread, viruses spread on personal computers by infecting the executable boot sectors of floppy disks. By inserting a copy of itself into the machine code instructions in these executables, a virus causes itself to be run whenever a program is run or the disk is booted. Early computer viruses were written for the Apple II and Macintosh, but they became more widespread with the dominance of the IBM PC and MS-DOS system. Executable-infecting viruses are dependent on users exchanging software or boot-able floppies and thumb drives so they spread rapidly in computer hobbyist circles.[citation needed]
The first worms, network-borne infectious programs, originated not on personal computers, but on multitasking Unix systems. The first well-known worm was the Internet Worm of 1988, which infected SunOS and VAX BSD systems. Unlike a virus, this worm did not insert itself into other programs. Instead, it exploited security holes (vulnerabilities) in network server programs and started itself running as a separate process. This same behavior is used by today's worms as well.[citation needed]
With the rise of the Microsoft Windows platform in the 1990s, and the flexible macros of its applications, it became possible to write infectious code in the macro language of Microsoft Word and similar programs. These macro viruses infect documents and templates rather than applications (executables), but rely on the fact that macros in a Word document are a form of executable code.[citation needed]
Today, worms are most commonly written for the Windows OS, although a few like Mare-D and the Lion worm are also written for Linux and Unix systems. Worms today work in the same basic way as 1988's Internet Worm: they scan the network and use vulnerable computers to replicate. Because they need no human intervention, worms can spread with incredible speed. The SQL Slammer infected thousands of computers in a few minutes.




  



Comments